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SUMMARY

In geometrically complex domains, the Ryskin and Leal (RL) orthogonal mesh generation system may
cause mesh distortion and overlapping problems when using the ‘weak constraint’ method with speci�ed
boundary point distribution for all boundaries. To resolve these problems, an improved RL system with
automatic smoothness control is proposed. In this improved RL system, the automatic smoothness control
mechanism is based on �ve types of smoothness conditions and includes the self-adjustment mechanism
and the auto-evaluation mechanism for an empirical parameter. The proposed system is illustrated using
several test examples. Several applications to natural domains are also demonstrated. It is shown that
the improved RL system is capable of resolving the above problems at little cost of orthogonality.
Copyright ? 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Mesh generation is the art of mapping between the physical coordinates and the computational
coordinates. Extensive researches (i.e. References [1–17]) in this area have been made. For
a detailed review of researches and development in the 1990s, please refer to Reference [16].
It is well accepted that the mesh quality has signi�cant in�uences on the solutions of the

partial di�erential equations (PDE) regardless of the numerical method. According to the
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analysis of the truncation errors by Thompson et al. [15], generally the in�uences of the com-
putational mesh on the solutions of PDE lie in two aspects: errors from the non-orthogonality
and the non-smoothness. Thus, the orthogonality and the smoothness are considered as standard
academic criterions to characterize the mesh quality. The goal of the quality mesh generation
should emphasize on both the orthgonality and the smoothness. However, purely orthogonal
and smooth meshes only exist in speci�c domains with simple geometries. For geometrically
complex domains, they usually cannot be obtained simultaneously. Compromises must be
made between them.
Since the late 1970s, orthogonal mesh generation has been the objective of many researchers

[1, 2, 4–12]. The TTM system (a Poisson equation system with control functions) developed
by Thompson et al. [14] and the Ryskin and Leal (RL) system (a Laplace equation sys-
tem) proposed by Ryskin and Leal [11] are the most robust and widely used elliptic mesh
generation systems. Another famous elliptic mesh generation system is the conformal map-
ping system, which is well known for orthogonal mapping with the equal scale factors in all
directions. The TTM system is capable of producing orthogonal meshes or meshes with grid
spacing controls according to the selections of the appropriate control functions, while the
RL system, derived according to the analogue of the Laplace equation for the stream func-
tion and the velocity potential function, is aimed at orthogonal mapping without considering
smoothness.
The e�ectiveness of the RL system for orthogonal mapping led to the wide use of this sys-

tem [1, 2, 4, 5, 7, 9, 17]. However, because only the orthogonality is emphasized, when applying
the RL system to geometrically complex domains using the ‘weak constraint’ method [11]
in which the boundary point distribution is speci�ed for all boundaries, problems such as
mesh distortion and overlapping may occur, as demonstrated by E�ca [5], Akcelik et al. [1]
and Zhang et al. [17] in their researches. One way to resolve these problems is to introduce
source terms (smoothness terms) into the RL system. Akcelik et al. [1] and Zhang et al.
[17] used this method to alleviate the above problems. Another way is to directly control the
distortion function f which is de�ned as a ratio of the scale factors in two di�erent directions
and plays an important role in orthogonal mapping. Usually the distortion function f is cal-
culated by its de�nition. Allievi and Calisal [2], E�ca [5] and Akcelik et al. [1] calculated f
from its de�nition in the entire domain. Tamamidis and Assanis [12] used a Poisson equation
to obtain a smooth variation of f in the entire domain. Duraiswami and Prosperetti [4] spec-
i�ed a class of admissible functions for f based on quasi-conformal mapping theory. Zhang
et al. [17] introduced a contribution factor to con�ne the growth of f and hence avoid mesh
distortion and overlapping problems.
In this paper, an improved RL system with automatic smoothness control is proposed,

which is an extension of the work of Zhang et al. [17]. In their work, they introduced
a contribution factor into the original RL system to control the e�ects of the distortion
function f and successfully resolved mesh distortion and overlapping problems in
geometrically complex domains. However, their proposed RL system was given only in
discretized form and has an empirical parameter to tune for good results. In this study,
the form of PDE is given for the modi�ed RL system proposed in Reference [17], the
physical meanings of this system is fully explored, and an automatic evaluation mecha-
nism is established for that empirical parameter. Comparisons of the present method with
other methods are made through several examples. Applications to natural estuaries are also
demonstrated.
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2. PREVIOUS STUDIES

One of the most widely used orthogonal generation systems is the RL system proposed by
Ryskin and Leal [11].

2.1. RL system

From the mapping between the physical coordinates (xi(≡ x; y); i=1; 2) and the computational
coordinates (�i(≡ �; �); i=1; 2), a metric tensor gij which represents the physical features of
a mesh can be de�ned as follows:

g=

⎧⎨
⎩
(x2� + y

2
�) (x�x� + y�y�)

(x�x� + y�y�) (x2� + y
2
�)

⎫⎬
⎭ (1)

where x�= @x=@� and so forth.
Accordingly, the distortion function f (also called aspect ratio) is de�ned as the ratio of

the scale factors in � and � direction:
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Analogue to the Laplace equations for stream function and velocity potential function leads
to the following PDE:
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Equation (3) is the Laplace mesh generation system proposed by Ryskin and Leal [11].
Using the central di�erence scheme to discretize Equation (3) at one typical mesh node (i; j),
one can obtain:

Fi; jxi; j =fi+1=2; jxi+1; j + fi−1=2; jxi−1; j +
1

fi; j+1=2
xi; j+1 +

1
fi; j−1=2

xi; j−1 (4a)

Fi; jyi; j =fi+1=2; jyi+1; j + fi−1=2; jyi−1; j +
1

fi; j+1=2
yi; j+1 +

1
fi; j−1=2

yi; j−1 (4b)

where Fi; j=fi+1=2; j + fi−1=2; j + (1=fi; j+1=2) + (1=fi; j−1=2).

2.2. Improved RL system

The original RL system emphasizes on the orthogonality but ignores the smoothness of
the mesh. It may cause serious mesh distortions and overlapping in geometrically complex
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domains. To remedy this, Akcelik et al. [1] introduced the inhomogeneous source terms into
the RL system, which controls favourably the scale factors and hence the aspect ratio of the
resulting grid. In 2004, Zhang et al. [17] proposed an improved RL system with contribu-
tion factors which con�ne the contributions of the neighbours of mesh node (i; j) to control
the mesh smoothness. Compared to the method of Akcelik et al. [1], this improved RL sys-
tem can resolve the mesh distortions and overlapping problems completely with little cost of
orthogonality.
In Reference [17], the improved RL system was given in the discretized forms as follows:

Fi; jxi; j =fi+1=2; jci+1; jxi+1; j + fi−1=2; jci−1; jxi−1; j +
ci; j+1
fi; j+1=2

xi; j+1 +
ci; j−1
fi; j−1=2

xi; j−1 (5a)

Fi; jyi; j =fi+1=2; jci+1; jyi+1; j + fi−1=2; jci−1; jyi−1; j +
ci; j+1
fi; j+1=2

yi; j+1 +
ci; j−1
fi; j−1=2

yi; j−1 (5b)

where Fi; j=fi+1=2; jci+1; j + fi−1=2; jci−1; j + (ci; j+1=fi; j+1=2) + (ci; j−1=fi; j−1=2) and ci; j is the
contribution factor of mesh node (i; j) de�ned as follows:

ci+1; j = (di+1; j)�=(
√
(xi; j − xi+1; j)2 + (yi; j − yi+1; j)2)� (6a)

ci−1; j = (di−1; j)�=(
√
(xi; j − xi−1; j)2 + (yi; j − yi−1; j)2)� (6b)

ci; j+1 = (di; j+1)�=(
√
(xi; j − xi; j+1)2 + (yi; j − yi; j+1)2)� (6c)

ci; j−1 = (di; j−1)�=(
√
(xi; j − xi; j−1)2 + (yi; j − yi; j−1)2)� (6d)

where di+1; j is the distance between point (i; j) and point (i + 1; j) and the exponential
parameter �∈ [0; 1] is a empirical parameter.
The contribution factor is evaluated by the distance of the mesh node (i; j) and its neigh-

bours and it can con�ne the unbounded growth of the distortion function within a reasonable
range to avoid the mesh overlapping. The empirical parameter � is an adjustable parameter
used to control the strength of the contribution factors.

3. PRESENT STUDY

The improved RL system de�ned by Equation (5) is capable of producing meshes in geomet-
rically complex domains without mesh distortion and overlapping problems if an appropriate
value of the empirical parameter � is selected. Without an automatic evaluation mechanism, the
manual evaluation process for this parameter would be tedious in order to obtain good results.
In this paper, further researches have been conducted on the improved RL system proposed
by Zhang et al. [17]. An automatic smoothness control method has been developed.
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3.1. Elliptic equations

In Reference [17], only the discretized equations were given. Using the central di�erence
scheme, the following relationships can be obtained:

ci+1; j = (di+1; j)�=[(h�)i+1=2; j]� (7a)

ci−1; j = (di−1; j)�=[(h�)i−1=2; j]� (7b)

ci; j+1 = (di; j+1)�=[(h�)i; j+1=2]� (7c)

ci; j−1 = (di; j−1)�=[(h�)i; j−1=2]� (7d)

Notice that the subscripts ‘�’ and ‘�’ in h� and h� do not denote the �rst-order deriva-
tives (FOD) with respect to � and �. Substituting Equation (7) into Equation (5) and then
rearranging it, the following PDE of the improved RL system can be obtained:
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Another form of Equation (8) is used in order to understand the physical meanings of the
improved RL system, i.e. as follows:

XO + XS = 0 (9a)

YO + YS = 0 (9b)
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where the subscript ‘O’ denotes orthogonality and the subscript ‘S’ denotes smoothness.
Both Equations (8) and (9) represent the improved RL system. Equation (8) is in conser-

vative form, while Equation (9) is a Poisson equation. As shown in Equations (9a) and (9b),
the improved RL system consists of two parts, the orthogonality part (XO and YO) driven by
the left-hand side of the original RL system, and the smoothness part (XS and YS) controlled
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by the contribution factors. The smoothness part is divided into three components. In the
right-hand side of Equations (9e) and (9f), the �rst term contains the FOD of the scale factor
in � direction (h�). Since the scale factor h� also represents the arch length in � direction,
the FOD of h� can characterize the smoothness in � direction. Thus, the �rst term can be
considered to avoid mesh overlapping in � direction. Similar to the �rst term, the second
term is for the smoothness in � direction. As for the last term, according to its mathematical
de�nition, the second-order derivative of x and y can characterize the distortion of the mesh
line, so the last term is against mesh distortion.
Another form of the smoothness part (XS and YS) can be easily derived.
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Notice that each component in smoothness part (XS and YS) de�ned by Equations (9e) and
(9f) are not equal to its counterpart de�ned by Equations (10a) and (10b), but both have the
same physical meanings.

3.2. Self-adjustment mechanism

In Equation (9), obviously the empirical parameter � has in�uences on the smoothness part.
To look deep into each component of the smoothness part, the e�ect of � will be excluded
in the following discussions.
The e�ect of the �rst smoothness component is also determined by the FOD of the scale

factor in � direction. The zero value of this FOD (called smoothness condition in � direction)
can make this component disappear in Equation (9). The physical meaning of this smoothness
condition can be interpreted in two di�erent scopes. At one typical mesh node (i; j), it implies
that the local scale factor is equal to the local averaged scale factor in � direction, as described
in Equation (11).(

@h�
@�

)
i; j

≈(h�)i+1=2; j − (h�)i−1=2; j=0

⇒ (h�)i+1=2; j=(h�)i−1=2; j

⇒ [(xi; j − xi+1; j)2 + (yi; j − yi+1; j)2]1=2 = [(xi; j − xi−1; j)2 + (yi; j − yi−1; j)2]1=2

⇒ xi; j=
xi−1; j + xi+1; j

2
; yi; j=

yi−1; j + yi+1; j
2

⇒ (h�)i; j=
(h�)i+1=2; j + (h�)i−1=2; j

2
= (h�)i; j

(11)

where (h�)i; j is the local averaged scale factor.
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If this smoothness condition is satis�ed in the entire domain, that is, Equation (11) is
satis�ed for each mesh node, one can have:

(h�)i; j=(h�)i=
1

Nj − 2
Nj−1∑
j=2

(h�)i; j (12)

where (h�)i is the global averaged scale factor at �= i line, and Nj is the total number of
mesh lines in � direction.
Similarly, for the second smoothness component, the local satisfaction of the zero value of

the FOD (called smoothness condition in � direction) implies the following equation:

@h�
@�

≈(h�)i; j+1=2 − (h�)i; j−1=2 = 0

⇒ (h�)i; j=
(h�)i; j+1=2 + (h�)i; j−1=2

2
= (h�)i; j

(13)

where (h�)i; j is the local averaged scale factor.
If this smoothness condition is globally satis�ed, one can obtain:

(h�)i; j=(h�)j=
1

Ni − 2
Ni−1∑
i=2
(h�)i; j (14)

where (h�)j is the global averaged scale factor at �= j line, and Ni is the total number of
mesh lines in � direction.
Because Equations (12) and (14) are much stricter than their counterparts—Equations (11)

and (13), Equations (11) and (13) are called relative smoothness condition in � and �
direction, while Equations (12) and (14) are called absolute smoothness condition in � and
� directions, respectively.
As for the last smoothness component in Equation (9), the distortion function f plays

an important role. If f=1, this component will vanish, which is equivalent to the absolute
smoothness condition, because for one mesh node (i; j), this condition can be described by

fi; j=1⇒ (h�)i; j=(h�)i; j (15)

For most cases, especially those with complex geometry, this absolute smoothness condi-
tion is too strict to be satis�ed for the entire domain. Satisfaction of this condition for the
whole domain also implies the smoothness conditions described by Equations (11)–(14), and
accordingly, Equation (9) will turn to the following conformal mapping system.

@2x
@�2

+
@2x
@�2

= 0 (16a)

@2y
@�2

+
@2y
@�2

= 0 (16b)

As a summary, the FOD of the scale factor and the distortion function f can automati-
cally adjust the e�ect of the smoothness part independent of the exponential parameter �

Copyright ? 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 51:1255–1276



1262 Y. ZHANG, Y. JIA AND S. S. Y. WANG

according to the local smoothness conditions. The smoother the mesh is, the smaller will be
the e�ects of the smoothness part, and vice versa. Since the absolute smoothness condition
de�ned by Equation (15) is much stronger than the relative smoothness conditions de�ned by
Equations (11) and (13), the adjustment mechanism for the �rst two smoothness components
according to the FOD of the scale factor is more e�ective than the one for the last smoothness
component due to the distortion function f.
For one mesh node (i; j), the deviation from the local smoothness conditions de�ned by

Equations (11)–(15) (DLS) can be measured by the following indicators:

(DLS)Local� |i; j = |(h�)i; j − (h�)i; j|
(h�)i; j

(17a)

(DLS)Local� |i; j = |(h�)i; j − (h�)i; j|
(h�)i; j

(17b)

(DLS)Global� |i; j = |(h�)i; j − (h�)i|
(h�)i

(17c)

(DLS)Global� |i; j = |(h�)i; j − (h�)j|
(h�)j

(17d)

(DLS)i; j =
|(h�)i; j − (h�)i; j|
max[(h�)i; j ; (h�)i; j]

(17e)

where the superscript ‘Local’ denotes the use of the local averaged scale factors, and the
superscript ‘Global’ denotes the use of the global averaged scale factors.
In Equation (17), (DLS)Local� |i; j and (DLS)Local� |i; j (the deviations from the local relative

smoothness conditions) are used to measure the local e�ects of the FOD of the scale factor
in the �rst two smoothness components, respectively, while (DLS)i; j (the deviation from the
local absolute smoothness condition) is used to measure the local e�ect of the distortion
function f in the last smoothness component. As for (DLS)Global� |i; j and (DLS)Global� |i; j, they
are used to measure the deviations from the local absolute smoothness conditions in � and �
directions, respectively.
Among the above �ve indicators, (DLS)Local� |i; j, (DLS)Local� |i; j and (DLS)i; j measure the

smoothness only in a local scope, while (DLS)Global� |i; j and (DLS)Global� |i; j consider the
global smoothness along individual mesh lines. Each indicator can measure only one aspect
of the local smoothness. Good indication (small value) of one indicator does not necessarily
mean the good local smoothness. To characterize the local smoothness comprehensively, the
following combination of these indicators can be used:

�1(DLS)Local� + �2(DLS)Local� + �3(DLS)Global� + �4(DLS)Global� + �5(DLS) (18a)

5∑
1
�i=1 (18b)

In Equation (18), a combination for optimal local smoothness may exist depending on the
importance of these indicators. In practice, it is di�cult to evaluate the importance of these
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indicators for mesh smoothness, because the optimal combination is case dependent. Further
researches are needed in this regard. In the current study, the contribution from each of the
�ve indicators is considered to be equally important. That is, an algebraic average of the
above �ve indicators is used.

(ADS)i; j=

[
(DLS)Local� + (DLS)Local� + (DLS)Global� + (DLS)Global� + (DLS)

5

]
i; j

(19)

where ADS is the averaged deviations from local smoothness conditions.

3.3. Automatic evaluation mechanism

As discussed previously, the smoothness part has an independent self-adjustment mechanism
due to the deviations from the local smoothness conditions. In Equation (5), the parameter �
is an empirical adjustable parameter to control the strength of the contribution factors. The
larger the � is, the more e�ective the contribution factors are, and the smoother will be the
resulting mesh. To achieve the goal of automatic smoothness control using the improved RL
system de�ned by Equation (8) or (9), an automatic evaluation mechanism must be also
established for this empirical parameter �. Obviously, this auto-evaluation mechanism should
be consistent with the self-adjustment mechanism of the smoothness part, which suggests that
the evaluation of � be related to the local smoothness conditions. And, it should not be the
repeating but the supplement of the self-adjustment mechanism.
Because the mesh distortion or mesh overlapping always occurs at places with large devi-

ations from the local smoothness conditions, it appears that the empirical parameter � should
have varied distributions in the whole domain. However, the spatial distribution of � implies
that di�erent equation systems would be solved at di�erent mesh nodes. From a global point
of view, this inconsistency may degenerate the overall quality of the mesh, or even in�uence
the steadiness of the computation (it will be demonstrated by some examples). To avoid this
inconsistency, a constant value of � instead should be used for each mesh node. And, to ob-
tain a global smoothness improvement, this constant value should be controlled by the mesh
node with the maximum deviations from the local smoothness conditions. For most mesh
nodes with good smoothness, this constant value might be over-predicted and unnecessary.
To reduce this in�uence it needs to comprehensively consider the local smoothness.
According to the above analysis, the maximum ADS is used to evaluate this empirical

parameter. Then one can obtain:

�= max[min(ADSi; j ; 1)] (20)

As demonstrated in Reference [17], � has big in�uence on mesh orthogonality and smooth-
ness. The larger it is, the smoother and less orthogonal will be the mesh, and vice versa.
Notice that Equation (20) implies that � is bounded within the range of [0; 1]. With the self-
adjustment mechanism and the auto-evaluation mechanism for �, the automatic smoothness
control on the mesh generation based on the improved RL system de�ned by Equation (8)
or (9) is established. Although � cannot vary in space, it can vary with iterations, since an
iteration process is usually used to solve Equation (8). During the iteration process, � is
dynamically adjusted by Equation (20) at each step.
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4. SOLUTION PROCESS

Since Equation (8) is nonlinear, an iteration process similar to that of Equation (20) is used
to solve the linearized Equation (5). The maximum di�erence between the grid coordinates
and the maximum relative di�erence of the distortion function f in consecutive steps are used
as the convergence conditions. Satisfaction of either one will stop the computation.

Error = max(
√
(xni; j − xn−1i; j )2 + (y

n
i; j − yn−1i; j )2)¡10

−6 (21)

Error = max
(
fn − fn−1

fn

)
¡10−6 (22)

where n is the iteration number.
The linear Equation (5) is solved iteratively using the following iterative algorithm:

(a) De�ne the boundaries of the domain and use an algebraic method to generate an initial
mesh.

(b) Calculate the distortion function f from its de�nition Equation (2).
(c) Calculate the exponential parameter � using Equation (20).
(d) Calculate the contribution factors from Equation (6) using the most recent solutions.
(e) Solve Equation (5) with �xed f obtained from step (b), the �xed exponential parameter

� from step (c) and the contribution factors from step (d).
(f) Update the mesh and check if the convergence condition is satis�ed. If not, repeat steps

from (b) to (f).

5. BOUNDARY CONDITIONS

The mesh generation based on the elliptic systems (Equations (3) and (8)) is an initial-
boundary value problem, and the boundary conditions have signi�cant in�uences on the
resulting mesh. There are two kinds of boundary conditions widely used: the Dirichlet bound-
ary condition and the Dirichlet–Neumann boundary condition. In the former boundary condi-
tion, the mesh nodes along the boundaries are �xed, while the latter allows the mesh nodes
to slide along the boundaries (Dirichlet) to satisfy the Neumann condition, and therefore it is
also called sliding boundary conditions.
The Dirichlet boundary condition is rigid and sometimes may cause the mesh distor-

tion and mesh overlapping problems in geometrically complex domains. As demonstrated in
References [1, 4, 17], in some complex domains these problems can be resolved by applying
the sliding boundary conditions to the appropriate boundaries. In the present study, in order
to purely test the e�ect of the improved RL system with automatic smoothness control, only
the Dirichlet boundary conditions are used for all the boundaries.

6. EVALUATION OF MESH QUALITY

Brackbill and Saltzman [3] used three indices, orthogonality, smoothness and adaptivity,
to evaluate the mesh quality. The orthogonality and the smoothness are standard academic
criterions for mesh quality evaluation and they are usually measured by the following

Copyright ? 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 51:1255–1276



STRUCTURED MESH GENERATION 1265

indicators, maximum deviation orthogonality (MDO), averaged deviation from orthogonal-
ity (ADO), maximum grid aspect ratio (MAR), and averaged grid aspect ratio (AAR). As
for the adaptivity, it measures the mesh density distribution according to the physics of a
particular problem and sometimes it is more preferred. In the current study, only the stan-
dard academic criterions, the orthogonality and the smoothness, are used to evaluate the mesh
quality.
The MDO and ADO, which are used to evaluate the orthogonality of a mesh, are de�ned as

MDO = max |�i; j − 90| (23a)

ADO =
1

(Ni − 2)
1

(Nj − 2)
Ni−1∑
2

Nj−1∑
2

|�i; j − 90| (23b)

where Ni and Nj are the maximum number of mesh lines in � and � directions, respectively,
and � is de�ned as

�i; j=arccos
(
g12
h�h�

)
i; j

(24)

The MAR and AAR, which are used to evaluate the smoothness of a mesh, are de�ned as

MAR = max
[
max

(
fi; j;

1
fi; j

)]
(25a)

AAR =
1

(Ni − 2)
1

(Nj − 2)
Ni−1∑
2

Nj−1∑
2
max

(
fi; j;

1
fi; j

)
(25b)

7. EXAMPLES

The proposed improved RL system de�ned by Equation (8) is compared with the original RL
system de�ned by Equation (3), and the conformal mapping system de�ned by Equation (16)
through several examples commonly used in the literatures [8–13]. The constant � in the whole
domain (Equation (20)) is also compared with the spatially varied � which is evaluated by
the following equation:

�i; j= min(ADSi; j ; 1) (26)

In the following examples except for domain E, initial meshes with uniform nodal distri-
bution along the four boundaries, namely, top boundary, bottom boundary, left boundary, and
right boundary, were generated by the algebraic method. The Dirichlet boundary conditions
are applied in all boundaries.

7.1. Symmetric domains

The symmetric domains A and B are selected to test the proposed method:

(1) Domain A (with concave boundary) is bounded by x=0, x=1, y=0, and
y=0:75 + 0:25 sin(�(0:5 + 2x)).

(2) Domain B is a unit square with one half-circle on each side.
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(A1) (A2)

(A3) (A4) 

Figure 1. Meshes in domain A: (A1) RL; (A2) improved RL with constant � in the whole domain;
(A3) conformal mapping; and (A4) improved RL with spatially varied �.

Meshes in domains A and B are plotted in Figures 1 and 2, respectively. The quality
of meshes is summarized in Table I. The original RL system caused the mesh lines to
be squeezed to the concaved top boundary in domain A, and to the centre of domain B.
It generated the best orthogonal meshes with the worst smoothness. The improved RL system
improved the mesh smoothness signi�cantly with little cost of orthogonality. In domain A,
slight mesh distortion occurred when using the spatially varied �. Using the constant � in the

Copyright ? 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 51:1255–1276



STRUCTURED MESH GENERATION 1267

(B1) (B2) 

(B3) (B4)

Figure 2. Meshes in domain B: (B1) RL; (B2) improved RL with constant � in the whole domain;
(B3) conformal mapping; and (B4) improved RL with spatially varied �.

whole domain produced globally smoother meshes. The conformal mapping system gener-
ated folded meshes at the concave boundary. In domain B, because the improved RL system
cannot handle the four corners well in domain B, the mesh lines moved outside of domain
at the four corners. The same problem existed when using the conformal mapping system.
One way to resolve these four corners is to apply the sliding boundary conditions to the four
circular boundaries or specify the non-uniform nodal distributions along boundaries, as used
by Duraiswami and Prosperetti [4].
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Table I. Evaluation of meshes in domains A and B.

Domain Case Size ADO MDO AAR MAR Final �

A A1 41× 41 0.07 0.62 4.86 33.9 —
A2 41× 41 2.29 5.03 2.49 10.9 0.403
A3 41× 41 3.18 11.62 2.98 411.3 —
A4 41× 41 1.68 4.82 2.64 9.26 —

B B1 30× 30 0.07 4.28 4.22 13.0 —
B2 30× 30 2.64 14.5 1.56 2.76 0.3
B3 30× 30 4.63 14.6 1.19 1.61 —
B4 30× 30 2.21 14.3 1.74 3.11 —

7.2. Asymmetric domains

Two asymmetric domains are used to further test the proposed methods.

(1) Domain C is bounded by x=0, y=0, y=1, and x= 1
2 +

1
6 cos(�y).

(2) Domain D is bounded by two-half circles and x-axis. The radius of the small circle is
one-third of that of the big one.

Figures 3 and 4 display the resulting meshes and Table II lists the evaluation report of mesh
quality. Using the original RL system, serious mesh distortions and overlapping occurred
within both domains. The improved RL with constant � in the whole domain successfully
removed the mesh distortions and overlapping with the orthogonality suppressed a little, while
the improved RL with the spatially varied � failed to generate su�ciently smooth meshes
without distortion and overlapping. Similar to domain A, the conformal mapping system also
failed to generate acceptable meshes for domain D.
The spatially varied � implies that di�erent equations are solved at di�erent mesh nodes.

As demonstrated in domains A, C and D, this inconsistency may degenerate the overall mesh
quality. Therefore, the constant � in the whole domain should be used in the improved RL
system.

7.3. Domain without distortion and overlapping problems

A symmetric domain E is selected to further compare the original RL and the improved RL
with constant � in the whole domain. This domain is bounded by x= − 2, x=2, y=0 and
y=2=[exp(x)+exp(−x)]. The non-uniform and symmetric nodal distribution is applied along
the top curved boundary.
The resulting meshes and their evaluations are displayed in Figure 5 and Table III. As can

be seen, these two methods have very similar performances, and both succeeded in generating
meshes without distortion and overlapping problems. The original RL is slightly better in
orthogonality, while the improved RL with constant � in the whole domain is a little better
in smoothness.

7.4. Convergence analysis

Figure 6 shows the convergence processes for domains A–D when using the improved RL
system with constant � in the whole domain. In Figure 6, the error is de�ned by Equation (21).
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(C1) (C2) 

  (C3)  (C4) 

Figure 3. Meshes in domain C: (C1) RL; (C2) improved RL with constant � in the whole domain;
(C3) conformal mapping; and (C4) improved RL with spatially varied �.
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(D1) (D2) 

(D3) (D4)

Figure 4. Meshes in domain D: (D1) RL; (D2) improved RL with constant � in the whole domain;
(D3) conformal mapping; and (D4) improved RL with spatially varied �.

Table II. Evaluation of meshes in domains C and D.

Domain Case Size ADO MDO AAR MAR Final �

C C1 41× 41 0.37 1.11 3.98 46.1 —
C2 41× 41 2.02 3.37 2.24 3.74 0.212
C3 41× 41 2.33 6.32 2.17 5.11 —
C4 41× 41 1.71 3.41 2.30 3.85 —

D D1 41× 41 0.62 3.70 147 5373 —
D2 41× 41 3.89 13.88 3.21 8.76 0.528
D3 41× 41 7.2 14.48 3.04 64.5 —
D4 41× 41 2.12 13.64 3.85 12.27 —

(E1) (E2) 

Figure 5. Meshes in domain E: (E1) RL; and (E2) improved RL with constant � in the whole domain.
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Table III. Evaluation of meshes in domain E.

Domain Case Size ADO MDO AAR MAR Final �

E E1 10× 41 0.30 0.82 1.60 3.14 —
E2 10× 41 0.42 0.95 1.58 3.13 0.169
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Figure 6. Convergence process: (a) domain A; (b) domain B; (c) domain C; and (d) domain D.

The initial value of the parameter � depends on the initial mesh. Then it was adjusted
dynamically with the iterations and converged to a constant value. As shown in Tables
I and II, the �nal values of � are 0:403; 0:3; 0:212 and 0.528 for these four domains,
respectively.
The �nal values of � for domains C and D in the present method are quite close to the

parameter � used in Reference [17], in which it is constant in both space and iterations and
was set to 0.2 and 0.6 for these two same domains, respectively. And the mesh qualities of
these two domains using both methods are also very close. (Please refer to Reference [17]
for the details of the results of these two domains.)

8. APPLICATIONS

A bay and an estuary (domains F and G) are selected to challenge the improved RL system.
The layouts of these two domains are displayed in Figure 7. The boundaries of both domains
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Figure 7. Layouts of Domains F and G.

are very irregular, and it is hard to apply the sliding boundary conditions. There are one spin
in domain F and three islands in domain G, which made it di�cult for mesh generation.
The initial meshes with non-uniform nodal distribution along the boundaries were created
by the algebraic method. The Dirichlet boundary conditions were used for all boundaries. In
these two natural domains, the improved RL system with constant � in the whole domain is
compared with the original RL system and the conformal mapping system.
Figures 8–11 show the resulting meshes and Table IV summarizes the evaluation of mesh

quality. For both domains, the original RL systems failed to generate an acceptable mesh
without mesh distortion and overlapping, although it produced best orthogonal meshes.
As shown in Figures 9 and 11, the conformal mapping system improved the mesh smooth-
ness greatly, but it also produced folded meshes at certain places for both domains. The
best smooth mesh still comes from the improved RL with constant � in the whole do-
main. These two applications show that the improved RL system is quite robust and
e�ective.

9. CONCLUSIONS

To resolve the mesh distortion and overlapping problems in geometrically complex domains
when using the RL system with the ‘weak constraint’ method, an improved RL system with
automatic smoothness control is presented in this paper. The proposed method is the further
improvement of the modi�ed RL system with contribution factors proposed by Zhang et al.
[17], in which an empirical adjustable parameter � is used to control the strength of the
contribution factors.
The improved RL system directly controls the distortion function f using the contribu-

tion factors to improve the overall mesh smoothness. Compared to the method proposed in
Reference [17], the present method does not need to tune the parameter to obtain good re-
sults. Instead, an automatic smoothness control mechanism, consisting of the self-adjustment
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(F1)  (F2) (F3)

Figure 8. Meshes in domain F (global): (F1) RL; (F2) improved RL with constant � in the whole
domain; and (F3) conformal mapping.

(F2) (F3)

Figure 9. Meshes in domain F (local): (F2) improved RL with constant � in the whole domain;
and (F3) improved RL with constant � in the whole domain.

mechanism and the auto-evaluation mechanism for �, has been established based on �ve
types of local smoothness conditions, namely, the local relative smoothness conditions in �
and � directions, the local absolute smoothness conditions in � and � directions and the local
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(G1)

(G3)

(G2)

Figure 10. Meshes in domain G (global): (G1) RL; (G2) improved RL with constant � in the whole
domain; and (G3) conformal mapping.

absolute smoothness conditions. An ADS is used to comprehensively characterize the local
mesh smoothness. The auto-evaluation mechanism is consistent with the self-adjustment mech-
anism and controlled by the maximum ADS. In order to avoid the inconsistency created by
the spatially varied �, the constant value of � in the whole domain is used instead. The
parameter � is dynamically adjusted during the iteration process.
Although it is proposed for 2D structured mesh generation, the present method can be

extended to 3D mesh generation as well. Examples and applications have shown that the
proposed RL system is capable of generating nearly orthogonal meshes with a good balance
of the orthogonality and the smoothness.
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(G2) (G3)

Figure 11. Meshes in domain G (local): (G2) improved RL with constant � in the whole domain;
and (G3) conformal mapping.

Table IV. Evaluation of meshes in domains F and G.

Domain Case Size ADO MDO AAR MAR Final �

F F1 41× 137 0.29 3.90 2.30 65.1 —
F2 41× 137 2.16 10.9 1.44 6.62 0.597
F3 41× 137 2.69 14.46 1.37 12.8 —

G G1 49× 192 0.71 8.70 27.6 1643 —
G2 49× 192 3.17 11.6 2.32 8.24 0.630
G3 49×192 3.83 14.4 2.34 100.1 —
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